通过制定教案,我们能够更好地衡量学生的学习成果和进步,教案应当引导学生将知识应用到实际情境中去,以下是58心得网小编精心为您推荐的2023数学教案6篇,供大家参考。
2023数学教案篇1
活动目标:
操作不同的材料,了解5分成两份有不同的结果。
掌握记录的方法,学会用语言表达操作的过程与结果。
让幼儿懂得简单的数学道理。
引发幼儿学习的兴趣。
活动准备:
教具 贴绒桃子,木珠,雪花片,格子标记及数字1——5若干套。
活动过程:
小组活动。
交待小组活动内容及要求。
第一组:撕贴格子。
先拿一张记录单看一看,总数是几,再拿一张与总数数量相同的格子纸条,沿线撕开分成两份贴在横线上,每排撕贴的答案要不一样;最后说一说5个格子可以分成几格几格,几格和几格和起来就是几格。
第二组:撒雪花片。
先数一数盘子里有几个雪花,再放在手心里晃一晃轻轻撒出去,然后记录几个花片里面有几个红的,有几个绿的;如果撒出的答案有重复就不要记录,再重新撒,不能记录重复的答案。
第三组:穿木珠。
每次取5个木珠,然后把5个木珠分别穿在两根棍子上,每次分穿的'结果要不一样,但记录的结果要和分穿的结果一样。
集体活动。
检查他们记录的是否正确,寻找对错标准,对在哪儿,错在哪儿。
教后感:通过看分类板,学会将图形分类。在课堂上孩子学习的欲望很高,气氛也比较好。操作的结果比较满意
活动反思:
数学能为幼儿动手、动口、动脑,多种感官参与学习活动创设最佳情景,激发幼儿的学习兴趣,调动学生积极性,最大限度地发挥学生身心潜能,省时高效地完成学习任务,同时,渗透思想品德教育,培养良好的学习习惯和心理素质,使智力和非智力品质协调发展。引导学生在“玩"中学,“趣"中练,“乐"中长才干,“赛"中增勇气。提高学习效率,培养学生良好的学习习惯和组织纪律性。
2023数学教案篇2
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
a 250 b 150 c 200 d 不能确定
解答:b
3.如图1:在 中, 于 , ,则 是( )
a 等腰三角形 b 锐角三角形
c 直角三角形 d 钝角三角形
解答:c
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
a 直角三角形 b 锐角三角形
c 钝角三角形 d 不能确定
解答:a
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
ab=240海里,bc=70海里,,ac=250海里;在△abc中
=(250+240)(250-240)
=4900= = 即 △abc是rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形abcd中,ab=4,ae=2,df=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△abe、△def、△bcf、△bef
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
2023数学教案篇3
课型:
复习课
学习目标(学习重点):
1. 针对函数及其图象一章,查漏补缺,答疑解惑;
2. 一次函数应用的复习.
补充例题:
例1.如图,la lb分别表示a步行与b骑车在同一路上行驶的路程s与时间t的关系
(1)b出发时与a相距 千米;
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;
(3)b出发后 小时与a相遇;
(4)求出a行走的路程s与时间t的函数关系式;
(5)若b的自行车不发生故障,保持出发时的速度前进, 小时与a相遇,相遇点离b的出发点 千米,在图中表示出这个相遇点c.
例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点p分别作x轴, y的垂线,与坐标轴围成矩形oapb的周长与面积相等,则点p是和谐点.
(1)判断点m(1,2),n(4,4)是否为和谐点,并说明理由;
(2)若和谐点p(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.
例3.在平面直角坐标系中,一动点p(x,y)从m(1,0)出发,沿由a(-1,1),b(-1,-1),c(1,-1),d(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是p点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是p点的纵坐标y与p点运动的路程s之间的函数图象的一部分.
(1)求s与t之间的函数关系式.
(2)与图③相对应的p点的运动路径是: ;p点出发 秒首次到达点b;
(3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.
课后续助:
1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式
①用水量小于等于3000吨 ;②用水量大于3000吨 .
(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),月租费是 元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:
(1)在y轴( )内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.
(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
2023数学教案篇4
活动名称:圆贴贴
活动目标:
1、认识圆形,运用圆形创作造型
2、发展幼儿想象力及操作能力
活动准备:
1、将各色色纸剪成大大小小的圆,贴在磁铁黑板上。剪刀、糨糊、圆形贴纸、画纸、磁铁、彩色等。
2、幼儿数学用书
活动过程:
(一)以讲《爱画画的波波的故事》的形式引起兴趣
随着故事情节让幼儿猜猜波波画的是什么?“小猪波波画了好多大大小小的圆,哥哥姐姐看了好久,不知道波波的圆圈是什么,就问波波:“你画的圆圈是什么呀?”波波说:“这个圆圈里有两只手,一只长,一只短,从早到晚绕着转。”哥哥说:“啊,我知道了,是时钟”,姐姐说:“那这个是什么?”波波说:“它下面还有一条长长的线,要抓好,才不会跑掉”。姐姐说:“喔,是气球”哥哥姐姐终于知道波波画什么了。波波又画了许多圆圈,连肚脐眼的圆都有呢?妈妈说:“波波真是个很棒的画家”。
(二)运用操作法让幼儿拼图
幼儿也当波波,用圆形色纸拼拼贴贴,看可以拼贴出什么造型。完成后请幼儿欣赏作品,鼓励幼儿说一说自己用圆形拼贴出了什么
(三)带领幼儿打开《我的数学》第一页,启发幼儿观察画面内容,让幼儿给圆形涂上自己喜欢的颜色,再说说图中还有哪些东西是圆的
(四)引导幼儿观察周围环境,想一想、说一说,生活中还有哪些东西是圆的。
2023数学教案篇5
活动目标:
1、通过一系列的游戏活动,让幼儿认识序数第一至第五。
2、发展幼儿思维的逻辑判断能力。
活动准备:
1、创设超市小货架的环境。
2、动物及其食品小图片、房子图、笔等。
活动过程:
(一)通过游戏“为小动物买礼物”理解序数。(序数可以从不同的方向数,从不同的方向数得出的结论会不同)
1、自由探索:
(1)引导幼儿以“到动物食品超市为小动物买礼物”的游戏形式到“超市”购物。(要求记住在什么颜色的货架上买到货物的)
(2)请个别幼儿告诉大家在什么颜色的格子里买到货物,并请其他幼儿猜一猜他是在第几个格格子里买到的东西。
2、交流讨论:
(1)师:为什么买同样的东西,会得出不同的结论?
(2)师引导幼儿发现序数可以从不同的方向数,从不同的方向数得出的结论会不同。
(3)幼儿分组交流:讲讲自己是从哪个方向数第几格中买的东西。
(二)游戏“给小动物送礼物”,巩固认识序数。
1、以“将超市买到的东西送给小动物”引题。
2、引导幼儿观察小动物的房子有几层,每层有几个房间。
3、师请一幼儿说说你买的东西(动物食品)是给谁吃的?它住在房子的哪一层,哪一个房间?并认识房间号如第一层第五间用“1-5”表示。
4、幼儿分组操作:将食品礼物送给小动物
(1)要求将小动物的房间号写在礼物卡上,然后送到房间。
(2)引导幼儿互相检查纠正操作结果,教师巡视
2023数学教案篇6
教学目标
1.使学生掌握加法各部分之间的关系,加深对加法的理解.
2.会利用这些关系对加法进行验算和求未知数 .
3.培养学生初步的判断推理能力.
教学重点
加法各部分间的关系.
教学难点
求未知数 的书写格式
教学过程
一、复习引新
填空
( )+20=50 300+( )=360
50+( )=86 ( )+200=700
二、学习新课
教师谈话:从一年级起,我们就学习了加法,今天我们来研究加法各部分间的关系.(板书课题)
1.教学例1(演示课件加法各部分间的关系)
(1)出示第一幅图
提问:①谁能说一说图的意思?
②根据图意怎样列式?
③说一说算式中各部分名称,以及他们之间的关系.
(2)教师板书:
(3)出示第二幅图
提问:①这幅图是什么意思?
②根据图意怎样列式?
(4)教师板书:
60-25=35(本)
引导学生与第(1)题比较:
提问:①这幅图已知什么,求什么?
②要求的数在第一题里是什么数?已知的两个数在第一题里分别是什么数?
③怎样求第一个数?
教师板书
第一个加数=和-第二个加数
(5)出示第三幅图:
提问:①这幅图是什么意思?
②怎样列式?
(6)教师板书:
60-35=25(本)
引导学生与第(1)题比较:
提问:①这幅图已知什么,求什么?
②要求的数在第一题里是什么数?已知的两个数在第一题里分别是什么数?
③怎样求第二个数?
教师板书:第二个加数=和-第一个加数
(7)归纳
提问:第(2)题求的是第一个加数,第(3)题求的是第二个加数,它们的关系式都用减法求出,这两个关系式能不能合并成一个关系式呢?
教师板书:一个加数=和-另一个加数
(8)根据加法各部分间的关系,验算加法算式.
验算:375+89=454
454-89=365 (差不等于其中的一个加数,说明加法的得数是错误的.)
正确答案:
练习:根据加法各部分间的关系,验算加法算式.
6274+52016=58290 24138+8289=32327
2.教学例2
教师:过去我们学过填括号的题,如:( )+15=40,想一想,用上面的关系,怎样算出括号里的数?(根据一个加数=和-另一个加数,40-15=25,所以括号里填25)
教师指出:括号里的未知数可以用字母 表示,变成例2.(板书:例2 求 +15=40中的未知数 )
介绍x是拉丁字母,读作〔eks〕,用汉字注音读爱克斯,一般用来表示未知数.
提问:(1)在等式 +15=40中, 表示什么数?
(2)怎样求出 是多少?
(3)根据什么用减法计算?
会计实习心得体会最新模板相关文章: